The Crystal Structure of $\mathrm{Hf}_{3} \mathrm{As}$

JAN-OLOV WILLERSTRÖM, BERTIL CARLSSON,* AND STIG RUNDQVIST

Institute of Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala, Sweden

Received December 5, 1978

Abstract

Hf_{3} As has a monoclinic unit cell of dimensions $a=15.3898(14) \AA, b=5.3795(5) \AA, c=15.3330(14) \AA$, $\beta=90.291(6)^{\circ}$. A structure proposal based on space group $C 2 / c$ (No. 15) has been refined by the least-squares method using a Rictveld-type fullprofile analysis of Guinier-Hägg X-ray powder film intensity data. The $\mathrm{Hf}_{3} \mathrm{As}$ structure is an intermediate between the $\mathrm{Fe}_{3} \mathrm{P}$ and the $\mathrm{Ti}_{3} \mathrm{P}$ types. The atomic coordination follows rules formulated earlier for representatives of the $\mathrm{Fe}_{3} \mathrm{P}-\mathrm{Ti}_{3} \mathrm{P}-\mathrm{V}_{3} \mathrm{~S}$ family of structures.

Introduction

In a brief note on the $\mathrm{Hf}-\mathrm{As}$ system, Rundqvist and Carlsson (1) reported the occurrence of a phase of composition $\mathrm{Hf}_{3} \mathrm{As}$. X-Ray Weissenberg photographs recorded for crystalline Hf_{3} As fragments invariably indicated twinning such that neither the Weissenberg films nor the powder diffraction patterns could be interpreted satisfactorily. In a later study a similar situation was encountered for $\mathrm{Ta}_{3} \mathrm{As}$ (2).

Recently, Murray et al. (3) found that Ta_{3} As crystallizes with a monoclinic symmetry. With this information at hand, we have reexamined the X-ray diffraction data for Hf_{3} As. As a result we have found that Hf_{3} As crystallizes with a monoclinic unit cell of dimensions similar to those of $\mathrm{Ta}_{3} \mathrm{As}$. The two compounds are most probably isostructural. Further analysis of the diffraction data suggested a structure proposal for Hf_{3} As which subsequently refined successfully (see below).

[^0]
Crystal Structure Analysis

The Hf_{3} As powder diffraction patterns recorded originally (1), using Guinier-Häggtype focusing cameras with $\mathrm{Cr} K \alpha_{1}$ radiation and silicon $(a=5.431065 \AA)(4)$ as the internal calibration standard, were tentatively indexed on the basis of a monoclinic unit cell of dimensions similar to those reported for $\mathrm{Ta}_{3} \mathrm{As}$ (3). A least-squares refinement using the local program CELNE (5) gave the following values and standard deviations (\AA): $\quad a=15.3898(14), \quad b=$ $5.3795(5), c=15,3330(14), \beta=90.291(6)^{\circ}$.

On reexamination of the rotation and Weissenberg films recorded earlier (1), we found that the data could be interpreted in terms of monoclinic twins with a pseudotetragonal symmetry about the monoclinic axis. The intensity data were compatible with $C c$ or $C 2 / c$ space group symmetry, in agreement with the results for Ta_{3} As. Furthermore, the unit cell dimensions and the intensity data indicated a close structural relationship to the $\mathrm{Fe}_{3} \mathrm{P}-\mathrm{Ti}_{3} \mathrm{P}-\mathrm{V}_{3} \mathrm{~S}$ family of tetragonal structures (6). The members of this family have approximate unit cell
dimensions of $a=9-11 \AA, c / a=0.5$. For $\mathrm{Hf}_{3} \mathrm{As}$ and $\mathrm{Ta}_{3} \mathrm{As}$, the monoclinic (pseudotetragonal) axes are approximately equal to the tetragonal axes in the $\mathrm{Fe}_{3} \mathrm{P}-\mathrm{Ti}_{3} \mathrm{P}-\mathrm{V}_{3} \mathrm{~S}$ structures, and the monoclinic angles are very close to 90°. The a and c axes are nearly equal and are approximately $2^{1 / 2}$ times larger than the a axes for the $\mathrm{Fe}_{3} \mathrm{P}-\mathrm{Ti}_{3} \mathrm{P}-\mathrm{V}_{3} \mathrm{~S}$ compounds.

Consideration of the various possibilities for adapting the structural theme in $\mathrm{Fe}_{3} \mathrm{P}$ and $\mathrm{Ti}_{3} \mathrm{P}$ to the lower symmetry of $\mathrm{Hf}_{3} \mathrm{As}$ eventually led to a structure proposal based on the space group $C 2 / c$. It involved six cightfold hafnium positions and two eightfold arsenic positions. Intensity calculations based on x and z positional parameters derived from the $\mathrm{Zr}_{3} \mathrm{P}$ structure (7) and y parameters approximating to multiples of $\frac{1}{4}$ strongly supported the assumptions made. Refinement of the structure model was accordingly started using the method for profile analysis of powder film intensity data developed by Malmros and Thomas (8).

The intensity profile data were obtained using a SAAB automatic film scanner $(9,10)$ connected to an IBM 1800 computer. The powder films recorded earlier were too strongly exposed to be suitable for intensity measurements. New powder films were therefore recorded in a Philips XDC-700 camera using $\mathrm{Cr} \mathrm{K} \alpha_{1}$ radiation. The original sample contained small amounts of hafnium metal in addition to $\mathrm{Hf}_{3} \mathrm{As}$. Storage in air for more than 10 years had also led to some oxidation, so that additional faint HfO_{2} lines were visible on the powder photographs. The three hafnium lines present on the films were removed from the profile data without serious loss of intensity information for Hf_{3} As, while the HfO_{2} reflections were included in the subsequent refinements by employing the multiphase refinement program described by Werner et al. (11).

Structure data for HfO_{2} were calculated using lattice parameters from Ref. 12 and the same positional parameters as those
reported for ZrO_{2} (13). The refinement converged in a very satisfactory manner considering the numerous overlaps among the diffraction lines. The final agreement factors obtained (for definitions, see Ref. 8) were $R_{I}=0.057, R_{F}=0.063, R_{p}=0.128$, and $R_{w p}=0.193$. A list of observed and calculated intensities, corrected for Lp and geometrical factors (8), is given in Table I. Final structure data are presented in Table II. The following parameters were refined: profile parameters-halfwidth (3), asymmetry (1), and 2θ-zero point (1); structure parameters-overall scale factor (1); for HfO_{2}, "occupancy parameter" (1); for $\mathrm{Hf}_{3} \mathrm{As}$, lattice parameters (4), positional parameters (24), and "overall temperature factor" (1). Scattering factors, corrected for the real part of the anomalous dispersion, were interpolated from values given in the "International Tables" (14). The occupancy parameter common for all atoms in HfO_{2} permits refinement of the $\mathrm{HfO}_{2} / \mathrm{Hf}_{3}$ As relative proportion in the sample. No attempt was made to correct for absorption. This means that the "overall isotropic temperature factor" as obtained from the refinement (3.5(2) \AA^{2}) includes absorption effects and thus provides no meaningful information on thermal vibrations.

Discussion of the $\mathbf{H f}_{3} \mathbf{A s}$ Structure

Interatomic distances calculated for $\mathrm{Hf}_{3} \mathrm{As}$ are given in Table III. The relationship between the three structure types $\mathrm{Fe}_{3} \mathrm{P}, \mathrm{Ti}_{3} \mathrm{P}$, and $\mathrm{Hf}_{3} \mathrm{As}$ is described with reference to Fig. 1 , which shows the structures in projection on the basal planes.

In the $\mathrm{Fe}_{3} \mathrm{P}$ - and $\mathrm{Ti}_{3} \mathrm{P}$-type structures, the metal atoms occupy three eightfold positions, denoted $M(1), M(2)$, and $M(3)$, and the nonmetal atoms, X, occupy a fourth eightfold position. The $M(1)$ and $M(3)$ atoms form an infinite three-dimensional network common to both types of structures. The $M(2)$ and X atoms are situated in chan-

TABLE I
Observed ${ }^{\text {a }}$ and Calculated Powder Diffraction Intensity Data for Hf_{3} As

$h k l$	$I_{\text {calc }}$	$I_{\text {obs }}{ }^{\text {b }}$	$h k l$	$I_{\text {calc }}$	$I_{\text {obs }}{ }^{\text {b }}$	$h k l$	$I_{\text {calc }}$	$I_{\text {obs }}{ }^{\text {b }}$	hkl	$I_{\text {calc }}$	$I_{\text {obs }}{ }^{\text {b }}$
200	3	c	220	18,017	18,848	025	95	101	-425	235	233
002	2	c	022	17,559	18,205	423	538	575	118	198	196
-202	3	c	-512	5,922	6,231	-5 15	5	6	425	1,380	1,331
202	8	c	512	3,135	3,134	-711	33	43	130	44	97
110	14	c	-221	390	439	711	76	114	-131	888	1,052
-111	17	c	221	765	816	-117	229	306	131	316	414
111	33	c	-602	189	d	117	117	206	-623	413	20
-112	71	99	-206	14,570	d	515	67	116	623	145	8
112	456	454	602	13,007	d	-712	1,378	1,497	-132	4	3
400	260	319	206	131	d	712	128	247	132	295	255
004	59	108	-222	5,966	d	-225	1	4	-804	98	112
310	36	13	222	5,182	d	225	95	91	-408	2,373	2,244
-311	256	201	023	769	d	800	364	614	804	2,579	2,682
-113	40	33	-513	21,672	21,115	008	92	99	408	118	195
311	17	14	-315	5,322	5,096	-424	2,021	2,059	-318	526	889
113	117	97	513	6,104	5,962	424	2,176	2,021	318	10	11
-402	147	92	315	19,462	19,452	-713	891	d	-715	7,691	8,033
-204	77	43	-116	140	199	-317	3	d	027	238	246
402	177	83	116	1,981	2,220	713	4	d	-517	2,261	2,297
204	150	58	-223	3,647	3,741	317	533	d	330	772	828
-312	1,740	1,388	223	1,540	1,765	-802	94	270	715	1,606	1,704
312	142	120	420	10,069	10,261	802	1,187	1,417	517	8,480	8,454
-114	0	2	024	11,905	11,771	-208	633	653	-331	0	0
114	721	783	-514	2,769	2,959	208	248	209	-133	207	326
-313	1,130	1,152	514	3,383	3,608	620	1,170	1,009	331	558	876
313	1,630	1,525	-421	2,306	2,513	026	833	794	133	2	4
-404	176	13	421	428	499	-5 16	415	409	-624	57	60
404	378	14	-604	9,154	9,535	-621	20	22	-426	520	505
020	1,299	1,433	-406	4	4	516	262	265	624	449	394
-314	4,976	4,757	604	90	110	621	269	262	426	169	129
510	1,111	1,063	406	8,438	9,053	-606	4	53	-227	3	2
314	7,756	7,713	-422	5	5	606	360	348	227	292	221
021	78	268	-224	9,827	10,262	-622	156	150	-332	244	218
-511	10,269	10,881	422	11,067	11,612	-226	758	758	332	2,988	2,740
511	15,689	16,099	224	225	232	622	327	326	910	289	242
-115	18,657	18,464	-316	3,711	3,949	-714	986	1,008	-911	76	5
115	10,544	10,019	316	3,960	4,599	226	11	11	911	460	18
600	12,061	11,728	710	1,061	981	-118	156	155			
006	13,517	15,275	-423	37	43	714	246	245			

${ }^{a}$ Recorded in a Philips XDC-700 focusing camera with $\mathrm{Cr} K_{\alpha_{1}}$ radiation, and measured by a SAAB automatic film scanner.
${ }^{b} I_{\mathrm{obs}}$ for overlapping reflections decomposed into individual components by the profile analysis program.
${ }^{c}$ Cut off by scanner slit system.
${ }^{d}$ Overlapped by hafnium line.
nels in the $M(1)-M(3)$ network. The two structures appear almost identical when viewed in projection on the basal plane. The major difference between them lies in the
disposition of the $M(2)$ and X atoms in the direction of the tetragonal axis. The $M(2)$ atoms are situated at the corners of slightly distorted tetrahedra. By sharing edges, the

TABLE II
Structure Data for $\mathrm{Hf}_{3} \mathrm{As}^{a}$

Atom b	x^{c}	y^{c}	z^{c}
$\operatorname{Hf}(11)$	$7367(5)$	$7895(12)$	$4026(6)$
$\operatorname{Hf}(12)$	$1570(5)$	$7231(15)$	$5100(5)$
$\operatorname{Hf}(21)$	$9415(5)$	$4802(15)$	$1669(5)$
$\operatorname{Hf}(22)$	$0808(5)$	$9664(14)$	$6899(5)$
$\operatorname{Hf}(31)$	$7362(5)$	$2672(13)$	$3021(5)$
$\operatorname{Hf}(32)$	$9487(5)$	$7556(14)$	$4835(5)$
$\operatorname{As}(11)$	$9161(9)$	$9916(35)$	$1317(10)$
$\operatorname{As}(12)$	$1214(9)$	$4602(31)$	$6627(12)$

${ }^{a}$ Space group $C 2 / c$ (No. 15), lattice parameters (\AA): $a=15.3898(14), b=5.3795(5), c=15.3330(14), \beta=$ $90.291(6)^{\circ}$.
${ }^{b}$ All atoms in $8 f$.
${ }^{c}$ Positional parameters $\times 10^{4}$; estimated standard deviations referring to the least significant digits in parentheses.
tetrahedra form infinite chains extending in the direction of the tetragonal axis. The nonmetal atoms are at the corners of larger, distorted tetrahedra enclosing the $\boldsymbol{M}(2)$ tetrahedra. In the $\mathrm{Fe}_{3} \mathrm{P}$-type structure, the

Fig. 1. The structures of (a) $\mathrm{Fe}_{3} \mathrm{P}$, (b) $\mathrm{Ti}_{3} \mathrm{P}$ and (c) Hf_{3} As projected on the basal planes.

TABLE III
Interatomic Distances in $\mathrm{Hf}_{3} \mathrm{As}(\AA)^{a, b}$

Hf(11)-As(12) 2.76(2)	Hf(12)-As(12) 2.79(2)
As(11) 2.89(2)	As(11) 2.84(2)
Hf(31) 3.00(1)	Hf(12) 2.90(2)
Hf(11) 3.04(2)	Hf(32) 3.05(1)
Hf(12) 3.11(1)	Hf(32) 3.23(1)
Hf(21) 3.11(1)	Hf(32) 3.24(1)
Hf(31) 3.17(1)	Hf(22) 3.28(1)
Hf(31) 3.21(1)	Hf(31) 3.31(1)
Hf(32) 3.36(1)	Hf(21) 3.36(1)
Hf(12) 3.37(1)	Hf(31) 3.43(1)
Hf(22) 3.42(1)	
Hf(12) 3.47(1)	
Hf(32) 3.49(1)	
Hf(12) 3.68(1)	

$\mathrm{Hf}(21)-\mathrm{As}(11)$	$2.71(2)$	$\mathrm{Hf}(22)-\mathrm{As}(11)$	$2.69(2)$
$\mathrm{As}(12)$	$2.79(2)$	$\mathrm{As}(11)$	$2.75(2)$
$\mathrm{As}(12)$	$2.81(2)$	$\mathrm{As}(12)$	$2.76(2)$
$\mathrm{As}(11)$	$2.83(2)$	$\mathrm{As}(12)$	$2.83(2)$
$\mathrm{Hf}(32)$	$3.09(1)$	$\mathrm{Hf}(32)$	$3.08(1)$
$\mathrm{Hf}(21)$	$3.11(2)$	$\mathrm{Hf}(31)$	$3.09(1)$
$\mathrm{Hf}(31)$	$3.18(1)$	$\mathrm{Hf}(22)$	$3.10(2)$
$\mathrm{Hf}(32)$	$3.23(1)$	$\mathrm{Hf}(31)$	$3.27(1)$
$\mathrm{Hf}(22)$	$3.24(1)$	$\mathrm{Hf}(32)$	$3.92(1)$
$\mathrm{Hf}(22)$	$3.27(1)$		
$\mathrm{Hf}(22)$	$3.68(1)$		
$\mathrm{Hf}(22)$	$3.72(1)$		
$\mathrm{Hf}(31)$	$3.96(1)$		
$\mathrm{Hf}(31)-\mathrm{As}(12)$	$2.69(2)$	$\mathrm{Hf}(32)-\mathrm{As}(11)$	$2.70(2)$
$\mathrm{As}(11)$	$2.83(2)$	$\mathrm{As}(12)$	$2.74(2)$
$\mathrm{As}(12)$	$3.02(2)$	$\mathrm{As}(11)$	$3.02(2)$
$2 \mathrm{Hf}(31)$	$3.16(1)$	$\mathrm{Hf}(32)$	$3.11(2)$
		$\mathrm{Hf}(32)$	$3.21(2)$

${ }^{a}$ Distances shorter than $4 \AA$ included.
${ }^{b}$ Estimated standard deviations referring to the least significant digit in parentheses.
$M(2)$ and X tetrahedra in one channel are translated a distance of approximately onehalf of the tetragonal axis with respect to the tetrahedra with equal orientation in the four adjacent channels. In contrast, the $M(2)$ and X tetrahedra of equal orientation are situated at approximately the same level in all channels in the $\mathrm{Ti}_{3} \mathrm{P}$-type structure.
In $\mathrm{Hf}_{3} \mathrm{As}$, the six nonequivalent hafnium positions and the two arsenic positions correspond pairwise to the atomic positions in $\mathrm{Fe}_{3} \mathrm{P}$ and $\mathrm{Ti}_{3} \mathrm{P}: \mathrm{Hf}(11)$ and $\mathrm{Hf}(12)$ to $M(1)$,
$\mathrm{Hf}(21)$ and $\mathrm{Hf}(22)$ to $M(2)$, etc. The $M(1)-$ $M(3)$ network in $\mathrm{Fe}_{3} \mathrm{P}$ and $\mathrm{Ti}_{3} \mathrm{P}$ has a nearly identical counterpart in the $\mathrm{Hf}(11)-\mathrm{Hf}(12)-$ $\mathrm{Hf}(31)-\mathrm{Hf}(32)$ network of Hf_{3} As. Likewise, the $\mathrm{Hf}(21), \mathrm{Hf}(22), \mathrm{As}(11)$, and $\mathrm{As}(12)$ atoms form chains of tetrahedra similar to those formed by $M(2)$ and X. With respect to one particular Hf_{4} (or As_{4}) tetrahedron in one channel, the tetrahedra of equal orientation in two of the adjacent channels lie at approximately the same y level, while they are translated a distance of approximately $b / 2$ in the remaining two channels. This feature reduces the symmetry from fourfold to twofold and represents the major structural distinction of $\mathrm{Hf}_{3} \mathrm{As}$ from the $\mathrm{Fe}_{3} \mathrm{P}$ and $\mathrm{Ti}_{3} \mathrm{P}$ types. The Hf_{3} As structure can accordingly be regarded as an intermediate step in the morphotropic transition from $\mathrm{Fe}_{3} \mathrm{P}$ to $\mathrm{Ti}_{3} \mathrm{P}$.

Coordination and bonding in compounds of the $\mathrm{Fe}_{3} \mathrm{P}-\mathrm{Ti}_{3} \mathrm{P}-\mathrm{V}_{3} \mathrm{~S}$ family have been discussed qualitatively in a recent article (6). Analysis of the interatomic distances indicated certain coordination trends which appeared to be associated with trends in the cohesive properties of the transition metal components. For the phosphide representatives, an empirical rule was formulated as follows: The greater the cohesive strength of the parent metal, the smaller is the phosphorus coordination number in the corresponding phosphide. For arsenide representatives, accurate structure data are available only for Nb_{3} As. Its coordination closely resembles that for $\mathrm{Nb}_{3} \mathrm{P}$.

The present results for Hf_{3} As show that this compound can be regarded as a new type among the members of the $\mathrm{Fe}_{3} \mathrm{P}-\mathrm{Ti}_{3} \mathrm{P}-\mathrm{V}_{3} \mathrm{~S}$ family of structures. It might then be expected that the coordination in Hf_{3} As should follow the same trend as that exhibited by the other representatives. The increasing cohesive strength in the series $\mathrm{Ti}-\mathrm{Zr}-\mathrm{Hf}$ suggests that the coordination for the nonmetal atoms in $\mathrm{Hf}_{3} \mathrm{P}$ and $\mathrm{Hf}_{3} \mathrm{As}$ should tend to be smaller than that in the corresponding compounds with titanium and zirconium. A
histographic representation of the phosphorus atom coordination in $\mathrm{Ti}_{3} \mathrm{P}$ and $\mathrm{Zr}_{3} \mathrm{P}$ (6) shows that the phosphorus atoms have a fairly even nine-coordination of metal neighbors in these compounds. An analogous histographic representation of the coordination about $\mathrm{As}(11)$ and $\mathrm{As}(12)$ in Hf_{3} As is shown in Fig. 2. The histograms indicate the number of $\mathrm{Hf}-\mathrm{As}$ distances falling within given intervals of D / d where D is a scale factor equal to the sum of the Goldschmidt radius for 12 -coordination for hafnium ($1.58 \AA$) and the covalent radius for $\operatorname{arsenic}(1.18 \AA)$, and d is the distance from a central arsenic atom to a hafnium neighbor. For further details of the histographic representation, see Ref. 6.

The moderate accuracy of the $\mathrm{Hf}_{3} \mathrm{As}$ interatomic distances as obtained in the present study precludes any more detailed conclusions. It appears from Fig. 2, however, that there is indeed a tendency toward an eight-coordination for arsenic, the ninth hafnium neighbor being situated at an appreciably greater distance from As(12) than the remaining eight. No structure data are yet available for $\mathrm{Hf}_{3} \mathrm{P}$.

An even stronger tendency toward eightcoordination for the arsenic atoms would be expected for $\mathrm{Ta}_{3} \mathrm{As}$, considering the greater cohesive strength of tantalum metal compared with hafnium. It is interesting to observe that the powder line intensities reported for $\mathrm{Ta}_{3} \mathrm{As}$ (3) are, in many cases, quite different from those of corresponding lines in the Hf_{3} As pattern, in spite of the small difference in X-ray scattering power between hafnium and tantalum. We interpret the differences in intensity in terms of

Fig. 2. Coordination histograms for $\mathrm{As}(11)$ and $\mathrm{As}(12)$ in $\mathrm{Hf}_{3} \mathrm{As}$.
small, systematic shifts of the atomic positional parameters in such a way that the ninth metal neighbor is farther removed from the arsenic atoms in Ta_{3} As than in $\mathrm{Hf}_{3} \mathrm{As} .{ }^{1}$

We finally conclude that Hf_{3} As represents a new member of the $\mathrm{Fe}_{3} \mathrm{P}-\mathrm{Ti}_{3} \mathrm{P}-\mathrm{V}_{3} \mathrm{~S}$ family of structures. The observed distribution of interatomic distances in Hf_{3} As supports the tentative coordination rules proposed for the class of compounds as a whole.

Acknowledgments

Financial support from the Swedish Natural Science Research Council is gratefully acknowledged. We are much indebted to Drs. J. O. Thomas and N. O. Ersson, Institute of Chemistry, Uppsala, for their invaluable help and advice in handling the powder profile refinement program.
${ }^{1}$ Note added in proof: A crystal structure refinement of Ta ${ }_{3}$ As was recently reported by Yu Wang, L. D. Calvert, E. J. Gabe, and J. B. Taylor, Acta Crystallogr. B35, 1447 (1979). The results are in full agreement with our predictions.

References

1. S. Rundovist and B. Carlsson, Acta Chem. Scand. 22, 2395 (1968).
2. S. Rundqvist, B. Carlsson, and C. -O. Pontchour, Acta Chem. Scand. 23, 2188 (1969).
3. J. J. Murray, J. B. Taylor, L. D. Calvert, Y. Wang, E. J. Gabe, and J. G. Despault, J. Less-Common Metals 46, 311 (1976).
4. R. D. Deslattes and A. Henins, Phys. Rev. Lett. 31, 972 (1973).
5. N. O. Ersson, Unpublished, Institute of Chemistry, Uppsala.
6. S. Rundovist, Y. Andersson, and S. Pramatus, J. Solid State Chem. 28, 41 (1979).
7. P. C. Nawapong, Acta Chem. Scand. 20, 2737 (1966).
8. G. Malmros and J. O. Thomas, J. Appl. Crystallogr. 10, 7 (1977).
9. S. Abrahamsson, J. Sci. Instrum. 43, 931 (1966).
10. "SAAB Film Scanner Manual," SAAB AB, Datasaab, Linköping, Sweden (1967).
11. P.-E. Werner, S. Salomé, G. Malmros, and J. O. Thomas, J. Appl. Crystallogr. 12, 107 (1979).
12. J. Adam and M. D. Rogers, Acta Crystallogr. 12, 951 (1959).
13. J. D. McCullough and K. N. Trueblood, Acta Crystailogr. 12, 507 (1959).
14. "International Tables for X-Ray Crystallography," Vol. IV, Kynoch Press, Birmingham (1974).

[^0]: * Present address: Surahammars Bruks AB, S-735 00 Surahammar, Sweden.

